Optimal design of plant lighting system by genetic algorithms
نویسندگان
چکیده
A genetic algorithm technique is developed for the optimal design of a supplemental lighting system for greenhouse crop production. The approach uses the evolutionary parallel search capabilities of genetic algorithms to design the pattern layout of the lamps (luminaires), their mounting heights and their wattages. The total number and the exact positions of luminaires are not predefined (even though possible positions lay on a fixed grid layout), thus the genetic algorithm system has a large degree of freedom in the designing process. The possibilities of mounting heights and luminaire wattages are limited to four different values for each luminaire in this study. A fitness function for the genetic algorithm was developed, taking into account light uniformity, light intensity capability, shading effects of the design, as well as operational and investment costs. The systems designed by the genetic algorithm show improved values of light uniformity and substantial savings without any effect on the light capacity capabilities of the system. Innovative automatically designed systems compare favorably with typical and expert-designed lighting systems. r 2004 Elsevier Ltd. All rights reserved.
منابع مشابه
AERO-THERMODYNAMIC OPTIMIZATION OF TURBOPROP ENGINES USING MULTI-OBJECTIVE GENETIC ALGORITHMS
In this paper multi-objective genetic algorithms were employed for Pareto approach optimization of turboprop engines. The considered objective functions are used to maximize the specific thrust, propulsive efficiency, thermal efficiency, propeller efficiency and minimize the thrust specific fuel consumption. These objectives are usually conflicting with each other. The design variables consist ...
متن کاملOptimal Design of a Brushless DC Motor, by Cuckoo Optimization Algorithm (RESEARCH NOTE)
This contribution deals with an optimal design of a brushless DC motor, using optimization algorithms, based on collective intelligence. For this purpose, the case study motor is perfectly explained and its significant specifications are obtained as functions of the motor geometric parameters. In fact, the geometric parameters of the motor are considered as optimization variables. Then, the obj...
متن کاملUsing Neural Networks and Genetic Algorithms for Modelling and Multi-objective Optimal Heat Exchange through a Tube Bank
In this study, by using a multi-objective optimization technique, the optimal design points of forced convective heat transfer in tubular arrangements were predicted upon the size, pitch and geometric configurations of a tube bank. In this way, the main concern of the study is focused on calculating the most favorable geometric characters which may gain to a maximum heat exchange as well as a m...
متن کاملOptimal Design and Benefit/Cost Analysis of Reservoir Dams by Genetic Algorithms Case Study: Sonateh Dam, Kordistan Province, Iran
This paper presents a method concerning the integration of the benefit/cost analysis and the real genetic algorithm with various elements of reservoir dam design. The version 4.0 of HEC-RAS software and Hydro-Rout models have been used to simulate the region and flood routing in the reservoir of the dam, respectively. A mathematical programming has been prepared in MATLAB software and linked wi...
متن کاملSatellite Conceptual Design Multi-Objective Optimization Using Co Framework
This paper focuses upon the development of an efficient method for conceptual design optimization of a satellite. There are many option for a satellite subsystems that could be choice, as acceptable solution to implement of a space system mission. Every option should be assessment based on the different criteria such as cost, mass, reliability and technology contraint (complexity). In this rese...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Eng. Appl. of AI
دوره 18 شماره
صفحات -
تاریخ انتشار 2005